\(\int \frac {x}{\sqrt {a+b x} \sqrt {c+d x}} \, dx\) [735]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 20, antiderivative size = 75 \[ \int \frac {x}{\sqrt {a+b x} \sqrt {c+d x}} \, dx=\frac {\sqrt {a+b x} \sqrt {c+d x}}{b d}-\frac {(b c+a d) \text {arctanh}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{b^{3/2} d^{3/2}} \]

[Out]

-(a*d+b*c)*arctanh(d^(1/2)*(b*x+a)^(1/2)/b^(1/2)/(d*x+c)^(1/2))/b^(3/2)/d^(3/2)+(b*x+a)^(1/2)*(d*x+c)^(1/2)/b/
d

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 75, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {81, 65, 223, 212} \[ \int \frac {x}{\sqrt {a+b x} \sqrt {c+d x}} \, dx=\frac {\sqrt {a+b x} \sqrt {c+d x}}{b d}-\frac {(a d+b c) \text {arctanh}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{b^{3/2} d^{3/2}} \]

[In]

Int[x/(Sqrt[a + b*x]*Sqrt[c + d*x]),x]

[Out]

(Sqrt[a + b*x]*Sqrt[c + d*x])/(b*d) - ((b*c + a*d)*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/(
b^(3/2)*d^(3/2))

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 81

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(c + d*x)^
(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {a+b x} \sqrt {c+d x}}{b d}-\frac {(b c+a d) \int \frac {1}{\sqrt {a+b x} \sqrt {c+d x}} \, dx}{2 b d} \\ & = \frac {\sqrt {a+b x} \sqrt {c+d x}}{b d}-\frac {(b c+a d) \text {Subst}\left (\int \frac {1}{\sqrt {c-\frac {a d}{b}+\frac {d x^2}{b}}} \, dx,x,\sqrt {a+b x}\right )}{b^2 d} \\ & = \frac {\sqrt {a+b x} \sqrt {c+d x}}{b d}-\frac {(b c+a d) \text {Subst}\left (\int \frac {1}{1-\frac {d x^2}{b}} \, dx,x,\frac {\sqrt {a+b x}}{\sqrt {c+d x}}\right )}{b^2 d} \\ & = \frac {\sqrt {a+b x} \sqrt {c+d x}}{b d}-\frac {(b c+a d) \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{b^{3/2} d^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.21 (sec) , antiderivative size = 75, normalized size of antiderivative = 1.00 \[ \int \frac {x}{\sqrt {a+b x} \sqrt {c+d x}} \, dx=\frac {\sqrt {a+b x} \sqrt {c+d x}}{b d}-\frac {(b c+a d) \text {arctanh}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {d} \sqrt {a+b x}}\right )}{b^{3/2} d^{3/2}} \]

[In]

Integrate[x/(Sqrt[a + b*x]*Sqrt[c + d*x]),x]

[Out]

(Sqrt[a + b*x]*Sqrt[c + d*x])/(b*d) - ((b*c + a*d)*ArcTanh[(Sqrt[b]*Sqrt[c + d*x])/(Sqrt[d]*Sqrt[a + b*x])])/(
b^(3/2)*d^(3/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(147\) vs. \(2(59)=118\).

Time = 1.66 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.97

method result size
default \(-\frac {\left (\ln \left (\frac {2 b d x +2 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \sqrt {b d}+a d +b c}{2 \sqrt {b d}}\right ) a d +\ln \left (\frac {2 b d x +2 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \sqrt {b d}+a d +b c}{2 \sqrt {b d}}\right ) b c -2 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \sqrt {b d}\right ) \sqrt {b x +a}\, \sqrt {d x +c}}{2 d \sqrt {b d}\, b \sqrt {\left (b x +a \right ) \left (d x +c \right )}}\) \(148\)

[In]

int(x/(b*x+a)^(1/2)/(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/2*(ln(1/2*(2*b*d*x+2*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*a*d+ln(1/2*(2*b*d*x+2*((b*x+
a)*(d*x+c))^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*b*c-2*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2))*(b*x+a)^(1/2)*(
d*x+c)^(1/2)/d/(b*d)^(1/2)/b/((b*x+a)*(d*x+c))^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.24 (sec) , antiderivative size = 232, normalized size of antiderivative = 3.09 \[ \int \frac {x}{\sqrt {a+b x} \sqrt {c+d x}} \, dx=\left [\frac {4 \, \sqrt {b x + a} \sqrt {d x + c} b d + {\left (b c + a d\right )} \sqrt {b d} \log \left (8 \, b^{2} d^{2} x^{2} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} - 4 \, {\left (2 \, b d x + b c + a d\right )} \sqrt {b d} \sqrt {b x + a} \sqrt {d x + c} + 8 \, {\left (b^{2} c d + a b d^{2}\right )} x\right )}{4 \, b^{2} d^{2}}, \frac {2 \, \sqrt {b x + a} \sqrt {d x + c} b d + {\left (b c + a d\right )} \sqrt {-b d} \arctan \left (\frac {{\left (2 \, b d x + b c + a d\right )} \sqrt {-b d} \sqrt {b x + a} \sqrt {d x + c}}{2 \, {\left (b^{2} d^{2} x^{2} + a b c d + {\left (b^{2} c d + a b d^{2}\right )} x\right )}}\right )}{2 \, b^{2} d^{2}}\right ] \]

[In]

integrate(x/(b*x+a)^(1/2)/(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(4*sqrt(b*x + a)*sqrt(d*x + c)*b*d + (b*c + a*d)*sqrt(b*d)*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*
d^2 - 4*(2*b*d*x + b*c + a*d)*sqrt(b*d)*sqrt(b*x + a)*sqrt(d*x + c) + 8*(b^2*c*d + a*b*d^2)*x))/(b^2*d^2), 1/2
*(2*sqrt(b*x + a)*sqrt(d*x + c)*b*d + (b*c + a*d)*sqrt(-b*d)*arctan(1/2*(2*b*d*x + b*c + a*d)*sqrt(-b*d)*sqrt(
b*x + a)*sqrt(d*x + c)/(b^2*d^2*x^2 + a*b*c*d + (b^2*c*d + a*b*d^2)*x)))/(b^2*d^2)]

Sympy [F]

\[ \int \frac {x}{\sqrt {a+b x} \sqrt {c+d x}} \, dx=\int \frac {x}{\sqrt {a + b x} \sqrt {c + d x}}\, dx \]

[In]

integrate(x/(b*x+a)**(1/2)/(d*x+c)**(1/2),x)

[Out]

Integral(x/(sqrt(a + b*x)*sqrt(c + d*x)), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {x}{\sqrt {a+b x} \sqrt {c+d x}} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate(x/(b*x+a)^(1/2)/(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more detail

Giac [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 95, normalized size of antiderivative = 1.27 \[ \int \frac {x}{\sqrt {a+b x} \sqrt {c+d x}} \, dx=\frac {\frac {{\left (b c + a d\right )} \log \left ({\left | -\sqrt {b d} \sqrt {b x + a} + \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d} \right |}\right )}{\sqrt {b d} d} + \frac {\sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d} \sqrt {b x + a}}{b d}}{{\left | b \right |}} \]

[In]

integrate(x/(b*x+a)^(1/2)/(d*x+c)^(1/2),x, algorithm="giac")

[Out]

((b*c + a*d)*log(abs(-sqrt(b*d)*sqrt(b*x + a) + sqrt(b^2*c + (b*x + a)*b*d - a*b*d)))/(sqrt(b*d)*d) + sqrt(b^2
*c + (b*x + a)*b*d - a*b*d)*sqrt(b*x + a)/(b*d))/abs(b)

Mupad [B] (verification not implemented)

Time = 4.43 (sec) , antiderivative size = 259, normalized size of antiderivative = 3.45 \[ \int \frac {x}{\sqrt {a+b x} \sqrt {c+d x}} \, dx=\frac {\frac {\left (2\,a\,d+2\,b\,c\right )\,\left (\sqrt {a+b\,x}-\sqrt {a}\right )}{d^3\,\left (\sqrt {c+d\,x}-\sqrt {c}\right )}+\frac {\left (2\,a\,d+2\,b\,c\right )\,{\left (\sqrt {a+b\,x}-\sqrt {a}\right )}^3}{b\,d^2\,{\left (\sqrt {c+d\,x}-\sqrt {c}\right )}^3}-\frac {8\,\sqrt {a}\,\sqrt {c}\,{\left (\sqrt {a+b\,x}-\sqrt {a}\right )}^2}{d^2\,{\left (\sqrt {c+d\,x}-\sqrt {c}\right )}^2}}{\frac {{\left (\sqrt {a+b\,x}-\sqrt {a}\right )}^4}{{\left (\sqrt {c+d\,x}-\sqrt {c}\right )}^4}+\frac {b^2}{d^2}-\frac {2\,b\,{\left (\sqrt {a+b\,x}-\sqrt {a}\right )}^2}{d\,{\left (\sqrt {c+d\,x}-\sqrt {c}\right )}^2}}-\frac {2\,\mathrm {atanh}\left (\frac {\sqrt {d}\,\left (\sqrt {a+b\,x}-\sqrt {a}\right )}{\sqrt {b}\,\left (\sqrt {c+d\,x}-\sqrt {c}\right )}\right )\,\left (a\,d+b\,c\right )}{b^{3/2}\,d^{3/2}} \]

[In]

int(x/((a + b*x)^(1/2)*(c + d*x)^(1/2)),x)

[Out]

(((2*a*d + 2*b*c)*((a + b*x)^(1/2) - a^(1/2)))/(d^3*((c + d*x)^(1/2) - c^(1/2))) + ((2*a*d + 2*b*c)*((a + b*x)
^(1/2) - a^(1/2))^3)/(b*d^2*((c + d*x)^(1/2) - c^(1/2))^3) - (8*a^(1/2)*c^(1/2)*((a + b*x)^(1/2) - a^(1/2))^2)
/(d^2*((c + d*x)^(1/2) - c^(1/2))^2))/(((a + b*x)^(1/2) - a^(1/2))^4/((c + d*x)^(1/2) - c^(1/2))^4 + b^2/d^2 -
 (2*b*((a + b*x)^(1/2) - a^(1/2))^2)/(d*((c + d*x)^(1/2) - c^(1/2))^2)) - (2*atanh((d^(1/2)*((a + b*x)^(1/2) -
 a^(1/2)))/(b^(1/2)*((c + d*x)^(1/2) - c^(1/2))))*(a*d + b*c))/(b^(3/2)*d^(3/2))